Fully deformable 3D digital partition model with topological control

نویسندگان

  • Guillaume Damiand
  • Alexandre Dupas
  • Jacques-Olivier Lachaud
چکیده

We propose a purely discrete deformable partition model for segmenting 3D images. Its main ability is to maintain the topology of the partition during the minimization process. To do so, our main contribution is a new definition of multi-label simple points (ML simple point) that is easily computable. An ML simple point can be relabeled without modifying the overall topology of the partition. The definition is based on intervoxel properties, and uses the notion of collapse on cubical complexes. This work is an extension of a former restricted definition [16] that prohibits the move of intersections of boundary surfaces. A deformation process is carried out with a greedy energy minimization algorithm. A discrete area estimator is used to approach at best standard regularizers classically used in continuous energy minimizing methods. We illustrate the potential of our approach with the segmentation of 3D medical images with known expected topology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Topological Maps, Multi-Label Simple Points, and Minimum-Length Polygons for Efficient Digital Partition Model

Deformable models have shown great potential for image segmentation. They include discrete models whose combinatorial formulation leads to efficient and sometimes optimal minimization algorithms. In this paper, we propose a new discrete framework to deform any partition while preserving its topology. We show how to combine the use of multilabel simple points, topological maps and minimum-length...

متن کامل

Multi-Label Simple Points Definition for 3D Images Digital Deformable Model

The main contribution of this paper is the definition of multilabel simple points that ensures that the partition topology remains invariant during a deformable partition process. The definition is based on simple intervoxel properties and is easy to implement. A deformation process is carried out with a greedy energy minimization algorithm. A discrete area estimator is used to approach at best...

متن کامل

Multi-object Deformable Templates Dedicated to the Segmentation of Brain Deep Structures

We propose a new way of embedding shape distributions in a topological deformable template. These distributions rely on global shape descriptors corresponding to the 3D moment invariants. In opposition to usual Fourier-like descriptors, they can be updated during deformations at a relatively low cost. The moment-based distributions are included in a framework allowing the management of several ...

متن کامل

Unified Deterministic/Statistical Deformable Models for Cardiac Image Analysis

OF THE DISSERTATION Unified Deterministic/Statistical Deformable Models for Cardiac Image Analysis by Sharath Kumar Gopal Doctor of Philosophy in Computer Science University of California, Los Angeles, 2016 Professor Demetri Terzopoulos, Chair This thesis proposes to fully automate the shape and motion reconstruction of non-rigid objects from visual information using a unified deterministic/sta...

متن کامل

A Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models

Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis.  Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011